CC- V: MATHEMATICAL PHYSICS-II (Credits: Theory-04, Practicals-02) ## F.M. = 75 (Theory - 40, Practical - 20, Internal Assessment - 15) Internal Assessment [Class Attendance (Theory) – 05, Theory (Class Test/ Assignment/ Seminar) – 05, Practical (Sessional Viva-voce) - 05] Theory: 60 Lectures The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen. Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity. (10 Lectures) Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions ($J_0(x)$ and $J_1(x)$) and Orthogonality. (24 Lectures) Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures) Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. Error on the slope and intercept of a fitted line. (6 Lectures) Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation. (14 Lectures) ## Reference Books: - 1. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier. - 2. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. - Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole. - Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill. - Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub. - 6. Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press - Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books